skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "de Cataldo, Mark Andrea"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We initiate and develop a framework to handle the specialisation morphism as a filtered morphism for the perverse, and for the perverse Leray filtration, on the cohomology with constructible coefficients of varieties and morphisms parameterised by a curve. As an application, we use this framework to carry out a detailed study of filtered specialisation for the Hitchin morphisms associated with the compactification of Dolbeault moduli spaces in [de 2018]. 
    more » « less
  2. Abstract We compute the supports of the perverse cohomology sheaves of the Hitchin fibration for GL n {\mathrm{GL}_{n}}over the locus of reduced spectral curves. In contrast to the case of meromorphic Higgs fields we find additional supports at the loci of reducible spectral curves. Their contribution to the global cohomology is governed by a finite twist of Hitchin fibrations for Levi subgroups. The corresponding summands give non-trivial contributions to the cohomology of the moduli spaces for every n 2 {n\geq{2}}. A key ingredient is a restriction result for intersection cohomology sheaves that allows us to compare the fibration to the one defined over versal deformations of spectral curves. 
    more » « less
  3. Abstract We construct a relative projective compactification of Dolbeault moduli spaces of Higgs bundles for reductive algebraic groups on families of projective manifolds that is compatible with the Hitchin morphism. 
    more » « less